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ABSTRACT
Bi-stable auxetic structures, a novel class of architected material systems that can trans-

form bi-axially between two stable states, offer unique research interest for designing a 

deployable stable structural system. The switching behavior we discuss here relies on 

rotations around skewed hinges at vertex rotating connectors. Different arrangements of 

skewing hinges lead to different local curvatures.

This paper proposes a computational approach to design the self-interlocking pattern of a 

bi-stable auxetic system that can be switched between fl at and desired curved states. We 

build an algorithm which takes a target synclastic polyhedral surface as input to generate 

the geometrical pattern with skewing hinges. Finally, we materialized prototypes to validate 

our proposed structures and to exhibit potential applications. 
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INTRODUCTION
Deployable structures are widely applied across many 

different disciplines, such as antenna design or emergency 

shelter construction (Häuplik-Meusburger 2011; Shah et 

al. 2019). From the architectural perspective, increasing 

demand for geometrically complex architecture pushes 

innovations of efficient building formworks to save fabrica-

tion time, labor, and cost. Deployable structures, which can 

transform from a flat state to the desired target geometry, 

are plausible solutions and have thus received intensive 

research interest for many decades. 

Although many designs of deployable structures have 

focused on regular patterns and repetitive mechanical 

joints in the past, recent work has leveraged geometric 

knowledge and advanced manufacturing technology to 

produce more sophisticated systems to create free-form 

target geometry. By compositing material with different 

mechanical properties (e.g., stiffness, expansion ratio) or 

designing mechanical linkages, structural systems can 

transform from the original fabricated state to a target 

configuration state by simply applying an external trigger.

This investigation is inspired particularly by two earlier 

studies: Rafsanjani and Pasini (2016) presented a family 

of bi-stable auxetic mechanisms that have homogeneous 

expansion rates; Ou et al. (2018) identified how to design 

spatial transformation unit based on skewed rotational 

axes.

Contributions—We introduce a fully automated algorithm 

to generate parameterized bi-stable auxetic patterns for 

target synclastic geometry. We investigate a hinge-based 

deployable structure systems to achieve bi-stable shape 

reconfigurations from flat to curved state. We achieve 

the flat-to-curved transformation by skewing hinge direc-

tions (Figure 1). The resulting pattern in flat configuration 

includes cutting paths along 2D curves with various inclina-

tions. We further show the geometric constraints brought 

by the bi-stable and auxetic mechanisms, especially within 

the design of a vertex star, where one skewing hinge 

directly constrains the design of its neighborhood hinge 

along a corresponding edge. Our computational method  

is tested and validated through various input surfaces 

(Figure 2).

RELATED WORKS
We survey previous research projects featuring deployable 

systems in this section with a special focus on work exhib-

iting external hinge systems as well as the latest research 

progress on bi-stable auxetic systems.

Kinetic-based Reconfiguration

Researchers have focused on the kinetic behavior of 

mechanical systems. They applied linear and spherical 

hinge joints, which respectively allow 1 and 3 degrees 

of freedom (DoFs). Origami is perhaps the most famous 

reconfigurable system involving linear hinges (Tachi 2011). 

For the making of more free-form surfaces, cuts or slits 

can be introduced to the origami folding system. The result 

is called kirigami. Researchers have demonstrated its 

ability to make any free-form surfaces by programming 

the patterns properly (Liu et al. 2018, 2019; Jiang 2020). 

Rotational ball hinges can provide more DoFs in trans-

formation, making it easier to achieve target free-form 

geometry. For instance, Konaković et al. (2016) presented 

how to design a free-form surface using the triangular 

auxetic pattern from conformal mapping and geometry 

optimization.

Bi-stable Mechanism

Mechanical bi-stability is a system that is also termed as 

snap-through buckling (Vahidi and Huang 1969). The term 

reflects on the features of how the system is switched from 

one stable state to another. From an energy point of view, 

1 A 3D-printed prototype for proposed system which combines flat pattern 
from Rafsanjani and Pasini 2016 and spatial rotational axes from Ou et al. 
2018 

2 Three different input target geometry surfaces and their generated 
bi-stable auxetic patterns
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as illustrated in Figure 4 with the basic bi-stable unit, the 

stable states correspond to the local minimum points of the 

system’s energy-displacement graph. When an external 

force applies to the system, two members begin to deflect. 

Until the external load passes the critical point, the unit will 

suddenly deviate from critical state to the alternative state. 

After the force is removed, elasticity will bring material 

back to its rest length, resulting in mirrored geometry to 

its starting state. To make full use of this geometry feature, 

the hinges should ideally store no energy in the rest state. 

In this paper, all the hinges are assumed to behave ideally, 

in order to design bi-stable mechanisms with geometric 

principals.

Bi-stable Auxetic System

Recent research has considered auxetic behavior in the 

bi-stable system, resulting in useful functions to explore 

a wider range of reconfiguration system. Rafsanjani and 

Pasini (2016) have shown a surface with periodic bi-stable 

units that can also be auxetic with a Poisson’s ratio of −1. 

Chen et al. (2021) used parametric cells with different 

expansion ratios to achieve the curved bi-stable auxetic 

surface at a fixed boundary. The primary difference in our 

research is that all the panels can spring back to their orig-

inal shapes without significant residual strain. We put our 

primary focus on the geometry of the start and end config-

urations. Our work guides the deployed state towards a 

designed shape by adequately arranging the rotation axes. 

We see our work as a novel demonstration of an inverse 

algorithm for designing the bi-stable deployable surface 

system.

METHOD OVERVIEW
This section introduces the fundamental approach and 

basic design workflow of our deployable system. The whole 

transformation process can be divided into two hierar-

chical perspectives: 1) in local reference frames, where two 

adjacent panels rotate against their corresponding virtual 

axis to achieve a target dihedral angle; 2) in the world 

reference frame, where a network created by connecting 

all the virtual axes goes through an isometric transfor-

mation, such as with a mirror relationship to the original 

stable stage. Combining the two transformations together 

will deliver a collection of flat faces to a curved configura-

tion. Reversely, an inverse transformation dispatch faces 

from a curved mesh to discrete pieces in a plane.

The critical principle of deployment in our approach is to 

program dihedral angles between adjacent panels through 

out-of-plane rotations from rotating connectors around 

each vertex. After we generate the layout of different faces 

in the plane, we can program the hinge locations and 

directions at each rotator according to the corresponding 

dihedral angle and the positional constraints from neigh-

boring rotators. This algorithm will be further explained in 

the Computational Workflow section. 

Figure 3 illustrates the general workflow of our inverse 

design method. In the first step, the facets of the polyhedral 

mesh are distributed onto a plane. Each face can rotate 

around an axis in a network which lies outside the plane. 

In a mesh where Gaussian curvature at each vertex is 

positive, the network exists and is called a ‘neutral surface’ 

3 General workflow of designing 
bi-stable auxetic patterns: We 
first take a polyhedral surface 
with synclastic curvature as 
input, then compute the virtual 
axes network that each face 
will rotate against. The rotary 
network satisfies the condition 
of ‘neutral surface’ to the input 
geometry so that rotation at 
each edge will have bi-stable 
properties. Subsequently, we 
compute skewing hinges at 
each rotary vertex to generate 
resulting patterns. Finally, the 
geometry with such patterns will 
push back to curved state given 
external forces.

3
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(Chiang 2019). In the second step, we map the hinge loca-

tions and directions based on the layout faces in a plane. 

A group of hinges around one vertex forms a rotating 

connector. If the vertex has positive Gaussian curvature, 

the rotating connector is a truncated pyramid; if it has 

negative Gaussian curvature, the rotating connector is 

a truncated tetrahedron. We calculate the shape of the 

rotating connector on each vertex and propagate the result 

from a central vertex to everywhere in the map. These 

rotating connectors naturally define the shape of panels, 

by defining either full hexagonal gaps or seams or half 

hexagonal seams (Figure 5). In the final step, an external 

pulling or pushing force actuates all the panels to rotate 

around their rotating connectors towards their second 

stable stage.

GEOMETRIC DEMONSTRATION
Kinetics of Bi-stable Auxetic Pattern

We analyze the geometry and kinetics behavior in auxetic 

bi-stable tiling first proposed in Rafsanjani and Pasini 

(2016) in Figure 6. The auxetic deformation behavior 

emerges due to the rotation of the colored squares; thus, 

we call them ‘rotating connectors’, and we call the rest of 

the components ‘panels’. The proposed patterns create a 

hexagonal void for each edge. Two ends of the hexagonal 

void are two “anchor” points that define the mirror axis of 

the void. This mirrored relationship echoes the nature of 

bi-stability from a geometric perspective in our previous 

section.

In planar transformation, like the cases in Rafasanjani and 

Pasini (2016), all the rotation axes are along the normals of 

the planes. Jifei et al. (2018) propose that skewing the rota-

tion axis in space produces out-of-plane rotation. Inspired 

by this, we replaced the homogeneously repeated pattern 

and the perpendicular cuts with a heterogeneously graded 

pattern and tilted cuts for flat to curved reconfiguration. By 

this method, two adjacent panels will form a dihedral angle 

when the void opens or closes, corresponding to the expan-

sion or contraction stage in the auxetic transformation. The 

following sections will discuss the geometric behavior of 

this mechanism.

Edge Transformation: Hexagonal Void with Virtual Hinge

We refer to the research by Chiang et al. (2018), which 

achieved a target dihedral angle by a bi-stable mech-

anism system through a configuration of skewed 

hinges. The author demonstrated important properties 

of spatial bi-stable transformation within a unit of two 

adjacent panels: the generalization of the prismatic 

voids in Rafsanjani and Pasini (2016) into non-prismatc 

voids. The generalized voids still have heptagonal basis 

and are symmetric, but are capable of delivering spatial 

(i.e. non-translational) transformations (Figure 7). The 

connecting panels have different rotating arms at the top 

and bottom surfaces, leading to different displacements 

at the two surfaces. The length of the rotating arms is 

proportional to the distances from the rotation axis, so is 

the displacement.

4

4 The reconfiguration process of the idealized bi-stable mechanisms and 
their load-displacement response from Chiang (Chiang 2019)

5 By defining hexagonal gaps (bottom part), or half hexagonal seams 
(top part), the bi-stable auxetic pattern can be actuated through 
expansion or compression

6 Bi-stable unit in plane contains a set of 'rotating connectors' (green) and a 
set of 'panels' (yellow), initially studied by Rafsanjani and Pasini (2016) 

Patterns for expansion
Rotating connectors

Patterns for compression
‘Neutral surface’

5
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To inversely design the hinges of two given adjacent panels 

(i.e., the dihedral angle is given), we might need to encounter 

the displacement by extending, trimming, or offsetting 

the face of some panels. If the two faces stay at the orig-

inal design position, the virtual hinge lies precisely on the 

bisecting plane of this dihedral angle to make sure that the 

flattened result will stay in the same plane. When one of the 

faces is offset along the normal, the virtual hinge no longer 

lies in the bisecting plane of two faces.

Vertex Transformation: Frustum Connector

When we reassemble the hexagonal voids along each edge, 

there are rotating connectors along vertices. In the case 

by Rafsanjani and Pasini (2016), all the rotating connec-

tors were right prisms since all the hinges are parallel and 

orthogonal to the plane. In the case of Figure 7, a virtual 

hinge exists in each hexagonal voids between two faces. 

Therefore, the connectors are frustums (i.e., truncated 

pyramids), and the local convexity defines their shapes. 

Figures 8 and 9 exhibit different types of rotating connec-

tors at the vertices. Each pair of hinges in the connector 

will intersect at a point either above or below the frustum, 

depending on the dihedral angle that its corresponding 

hexagonal void maps to. When the discrete Gaussian curva-

ture at one vertex is positive, its connector is a frustum, as 

all hinges around meet at an apex. The scenario is more 

complex when the dihedral angle around one vertex has 

different signs, leading to negative Gaussian curvature. In 

the case that the vertex is at a valence of 4, its connector is 

a truncated tetrahedron.

Constraints in a Vertex Star: Simultaneous Rotations

 The designers must consider the constraints between 

interrelated hexagonal voids and the connector to arrange 

the hexagonal voids around a vertex. Each hinge affiliates 

to two successive hexagonal voids from the relationship in 

two configurations. Consider the design of a vertex star in 

Figure 10. Observing the angles around one hinge point in 

open and closed states gives us two equations: 

                       αn+βn+θn+ωn-1 = 2π ,           (1)

                    αn+βn+(2π - ωn-1) = 2π , (2)

where α is the interior angle of the rotating connector, β is 

the angle of the panel attaching to the connector, while ω 

and θ are the obtuse and acute angle of the hexagonal void, 

respectively. Subtract equation (2) from equation (1), we 

deduct the following equation which describes the angle 

agreement between the two successive voids:

                          θn+2ωn-1 = 2π , (3)

Equation (3) connects the degrees of freedom around a 

vertex. It means the geometry of a hinge is affected by the 

adjacent ones. In the meantime, the coplanar condition 

and dihedral angle correspondence given by the Edge 

Transformation subsection also limit the position of the 

hinge by the adjacent hinge in its neighborhood vertex.

To make our system more manageable, we introduce the 

method of unrolling a conical mesh (Liu et. al. 2006; Chiang 

et. al. 2018) as a guide for those rotating polygons. The 

conical mesh has nice properties as each vertex has a 

7 Edge transformation is illustrated as closing the gap of a hexagonal void; 
the closing/ opening reconfiguration is equivalent to rotate against a 
virtual hinge

8 Vertex transformation is illustrated as rotating around a polyhedron 
connector: (left/right) open(flat)/closed(curved) stage with a connector  
at an anticlastic vertex

9 (Left/right) Open(curved) /closed(flat) stage with a connector  
at a synclastic vertex

7

8

9
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normal axis intersected by all the bisector planes of the 

dihedral angles between surrounding facets, which can 

be taken as an offset direction for generating our virtual 

hinges. We will set up the computational workflow based on 

the conical surface input.

COMPUTATIONAL WORKFLOW
The previous section analyzed the mechanism and 

geometric features of bi-stable auxetic reconfigura-

tion. Here, we discuss how to automate the design of 

each hexagonal void and rotating connector. This paper 

focuses solely on the situation where each virtual rotation 

axis stays on the same side of the input polyhedral mesh 

(i.e., synclastic surface). Under such circumstances, the 

Gaussian curvature is positive, and all hinges around a 

rotating connector meet at a common point, forming a 

pyramidal frustum (see Geometric Demonstration section). 

Therefore, all the virtual axes can form a network with a 

shared point to each vertex, making it easier to compute 

their positions from the target surface mesh. Figure 11 

demonstrates the basic computational workflow for our 

algorithm which we will explain in detail through the 

following three parts (Algorithm A in the Appendix).

Computation of Virtual Rotation Axes

The aim of the first part of our algorithm is to compute the 

location of all the virtual rotation axes during the reconfig-

uration. To ensure all the polygons stay in the same plane 

after unrolling, the network of virtual axes must follow 

the edge directions in the ‘neutral surface’ to the original 

conical mesh, as demonstrated by Chiang (2019). All the 

normal vectors of the mesh face on the ‘neutral surface’ 

have half as many polar angles as their corresponding 

faces in a polar coordinate system whose z-axis points 

towards the common plane after face unrolling. Here we 

provide an algorithm to compute the neutral surface, which 

expands and augments the original research (Algorithms B 

and C in the Appendix).

After computing the neutral surface, we can mirror 

it against the plane defined by the z-axis of the polar 

coordinate system to get its reference position after recon-

figuration. Since the relative positional relationship stays 

unchanged in the reconfiguration, we can then unroll each 

polygon from the target surface to separate planar posi-

tions by orienting through its virtual rotational axes.

Computation of Skewed Hinges 

The second part of our algorithm is to locate the hinges 

in the rotating connectors. The hinges will transform the 

unrolled panels that are computed in the first phase. The 

hexagonal voids created by those rotators bring all scat-

tered panels in the flat configuration back to the initial 

curved configuration.

Figure 13 shows how we locate the aligned hinge positions 

at a vertex through an internal loop. The loop cycles depend 

on the vertex valence. Each hinge should also pass through 

the merged point on the neutral plane. All the hinges 

should also be limited in the bisector plane to the reference 

rotation angles centered at the merging point to glue each 

unrolled vertex together. Recall the angle constraints in 

Equation (3). Since θn is equivalent to the dihedral angle 

of the associated edge at curved stage due to the desired 

edge transformation, we can get ωn-1 for each hexagonal 

void. With each hinge fixed to the bisector plane, once we 

know the location of one hinge, we can compute the adja-

cent hinge by finding a direction from its constrained plane 

so that this hinge connects the calculated hinge and its 

associated edge at the ‘neutral surface’ to a dihedral angle 

ωn. Algorithm D in the appendix shows how we compute it 

through linear algebra. As we loop through to the last hinge, 

the same operation should bring that hinge to the exact 

position at the starting point.

However, this looping algorithm may need different input 

variables to execute, subject to the DoFs limited by the 

vertex’s neighborhood condition. The initial input without 

external constraints has three DoFs: two for pivot vector 

direction and one for angular coordinates at the bisector 

plane. Each time we fix a vertex’s rotation connector, 

we eliminate one DoF of its neighborhood. Figure 14 

explains the different cases of this input with DoFs at 3,2,1, 

respectively. 

10 Internal angle constraints for hinge positions within a vertex star
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To assume a vertex will never have a zero-input variable, 

we apply a spanning tree to consecutively fix the hinge 

positions at each vertex across the mesh. The propaga-

tion follows a very straightforward approach by placing 

neighborhood vertices in the candidate bag and removing 

executed vertex from the pool (Algorithm E in the Appendix). 

It is noticed that the boundary vertices come at the very last 

step of this enumeration because they have fewer limits to 

constrain the hinge directions.

Computation of Final Configuration States

The final part of our algorithm is to form the patterned 

panels by connecting the designed hinges. We can design 

two patterns from the same set of skewed hinges based 

on whether the flat stage is open or closed, as shown in 

Figure 15. If we want to actuate the system by compressed 

stress, the flat pattern should be open with hexagonal voids. 

Here we can mirror each edge of the rotating connectors 

to evaluate the resting positions for those hinges after 

the bi-stable transformation phase and connect adjacent 

hinges and resting positions along corresponding edges 

to form those hexagonal voids and thus all the panel 

geometries. In the other situation where an open curved 

configuration is desired, we connect the hinge positions 

in an orthogonal way and leave no gap in the flat pattern. 

After we get those panels, we use the transformation 

introduced in Geometric Demonstration section to move the 

patterns from the plane to the curved configuration.

This section presents the computational methods to design 

bi-stable auxetic patterns for a target synclastic polyhedral 

surface. We provide a pivotal diagram showing the relation-

ship between the reference polyhedral geometry, virtual 

axes, and our designed results (Figure 12).

RESULTS
Evaluation and Optimization

The proposed workflow has been tested on several archi-

tectural surfaces as shown in Figure 2. Important criteria 

to evaluate the performance of our workflow are the offset 

distance at each panel edge from its original edge and the 

acute angle at each hexagonal void. Those two values are 

subject to the influence of both intrinsic geometric proper-

ties and the input variables in our algorithm. We introduce 

a non-linear optimization strategy, namely through the 

guided projection method (Tang 2014) to adjust those vari-

ables to better design the patterns.

11 12
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11 Computational workflow of 
bi-stable auxetic design

12 Correspondence between target 
and reference geometry and the 
bi-stable auxetic patterns

13 Looping algorithm to align 
hinge positions inside a rotating 
connector. (Left to right) (1) 
Determine isosceles triangles by 
pivot direction; (2) draw bisector 
planes of the tip angle, deter-
mine direction of the starting 
hinge; (3) get next hinge direction 
according to the constraint; and  
(4) loop (n-1) times (n = vertex 
valence) to get all the hinge 
positions

14 Different DoFs in a rotating 
connector design

14

Fabrication Results

We used CNC milling to materialize the pattern generated 

by our algorithm. We paid careful attention to the drilling 

width as a design factor. The diameter of the drill bit leads 

to round corners for acute angles of those hexagons, 

resulting in unwanted gaps between voids. Hence, we offset 

the edges so that the drill can create usable living hinges 

(Figure 16). Parameters are scripted and tested before 

finding the proper hinge width values at 0.3mm and offset 

distance at 1.0 mm to fabricate 1/8in-thick polypropylene 

sheet. The final prototype model fabricated by a 6-axis CNC 

machine is shown in Figure 17.

DISCUSSION
Structural Behavior

During the process of reconfiguration, all the hinges will 

endure high centralized stress and strain. However when 

the second stable state is reached, all the panels spring 

back to their resting length. Particularly, when the curved 

state is in contraction (Figure 15a), beams of each panel 

will touch on their neighborhood due to the well-designed 

mirrored features in our algorithm. Therefore, all of its 

self-weight can pass through those contact surfaces, If the 

target geometry is a compression-only shell, this system is 

capable of large gravitational loads, such as freshly poured 

concrete. This feature makes our system viable to serve 

as potential flexible, lightweight,economical and deployable 

formworks.

Architectural Speculation

Our proposed system can be applied in various architec-

tural conditions. Importantly, it can serve as a deployable 

13

formwork, as it fits the structural behavior we just 

discussed. This type of system has been of recent interest 

in research, including knit-cable systems (Popescu et 

al. 2018) and inflatable systems (Panetta et al. 2021). 

Compared to the knit-cable and fabric techniques, 

which can only serve for minimal surfaces, our system 

provides solutions for compressive structures with posi-

tive-Gaussian curvature. Uniquely to those approaches, 

our system provides a network of repetitive geometric 

motifs. The interlocking pattern functions mechanically as 

a deployable system and provides its unique aesthetic qual-

ities. Figure 18 shows the workflow of building a concrete 

shell structure through our formwork system. The volumes 

with gaps can be prefabricated in the factory as an injec-

tion mold, into which an elastic material like silicon rubber 

can be poured to fabricate the large-scale molding cast. 

On the construction site, a wheel-track system can provide 

actuation. The mold in flattened configuration becomes a 

curved vault after its anchor points are dragged inward. 

Mortar and structural concrete are then poured on the top 

of it, leaving the Guastavino-like interlocking texture in the 

bottom. This elastic formwork can be removed after giving 

cuts alongside the four mirror axes and flattened individu-

ally. Thus, the molding can be recycled for reproduction.

Another interesting application is to build more efficient 

responsive screens. Our adaptive system allows for the 

production of unit components that can be switched from 

flat to various curved shapes. More importantly, with the 

bi-stable mechanism in our system, energy is only needed 

during the transformation phrases. This is a significant 

advantage over the lengthy actuation process for most 
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patterns with other passive elements. This could help 

increase the scaling ranges and application possibilities.

CONCLUSION
We introduce geometric properties and a method for the 

design of bi-stable auxetic patterns. Such patterns are 

formed by linear hinges allowing out-of-plane rotation 

and thus enable the system to be actuated into shape with 

desired dihedral angles at each edge. Thanks to a proper 

propagation approach, we can generate the patterns 

and overcome the complex geometric condition around 

each vertex star. We then provide a tool for designing 

free-form synclastic geometry and use prototypes to 

showcase different fabrication and material. Our proposed 

system has potential to be widely used for architectural 

applications as a novel strategy for bi-stable deployable 

structures.

existing kinetic façade or rooftop systems. For more 

general purposes, our system also serve as an alternative 

option for emergency or disaster relief shelters and as 

demonstrators in pavilion design (Figure 19).

Limitations and Future Work

Our research work gives primary focus on to geometrical 

features at start and end states, assumes all the hinges 

rotate freely during the reconfiguration process. The 

system needs extra design on hinges to resolve the stress 

concentration for large-scale applications. In the future, it 

may be helpful to add simulation and FEA analysis focusing 

on the hinge detailing, dynamic effects during the transfor-

mation, and structural performance in the deployed stated.

Although we demonstrated that the vertex transformation 

can cover both positive and negative Gaussian curvature, 

the nature of a ‘neutral surface’ limits our reference virtual 

hinges to the one side of our target geometry. Thus, our 

algorithm can only apply to synclastic geometry, It would 

be useful to generalize the condition of ‘neutral surface’ 

to a broader context as a network of curves with special 

curvature relationships to the target mesh so that we can 

automate the bi-stable auxetic patterns for all free-from 

geometries.

Currently all the edges in our pattern are bi-stable. This 

means a significant amount of external forces are needed 

to actuate the whole system, which may be inappropriate 

especially when we scale it up to an architectural context. 

For that application, we could instead mix bi-stable edge 

15
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