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2 Graph augmentation process. 
Left to right: framework, inter-
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ABSTRACT
This paper demonstrates the potential of a robust, low-cost approach to programmable 

matter using beads and string to achieve complex shapes with novel self-organizing and 

deformational properties. 

The method is inspired by the observation that beads forced together along a string will 

become constrained until they spontaneously rigidify. This behavior is easily observed 

using any household string and flat-faced beads and recalls the mechanism behind classic 

crafts such as push puppets. However, specific examples of architectural applications are 

lacking. 

We analyze how this phenomenon occurs through static force analyses, physical tests, 

and simulation, using a rigid body physics engine to validate digital prototypes. We 

develop a method of designing custom bead geometries able to be produced via generic 

3D-printing technology, as well as a computational path-planning toolkit for designing 

ways of threading beads together. We demonstrate how these custom bead geometries 

and threading paths influence the acquired structure and its assembly. Finally, we propose 

a means of scaling up this phenomenon, suggesting potential applications in deployable 

architecture, mortarless assembly of nonfunicular masonry, and responsive architectural 

systems.



373

2

INTRODUCTION
Self-assembly at the microscale has been the subject of 

extensive biochemical research. This phenomenon has 

recently been shown to extend to the macroscale, as 

demonstrated by projects like Fluid Crystallization by MIT 

Self-Assembly Lab (Tibbits 2014). In such experiments, 

mimicking the biochemical example, components move 

freely in a fluid like air or water and are dependent on 

specialized “handshake mechanisms” like magnetic links. 

Related projects such as the Macrobot (Tibbits 2011) 

perhaps bear closer comparison with the present work, 

in that they encode a global geometry into a series of 

part-to-part rules. We consider the present work to be a 

continuation of this line of inquiry, deviating in its novel use 

of only tensile cord and solid geometry to achieve similar 

results without specialized components.

Research in lightweight, mortarless, tensegrity structures, 

such as the Periscope Tower by Matter Design Studio 

(Clifford and McGee 2011), offers further parallels. We 

seek to extend such examples, though, by applying tension 

dynamically, taking full advantage of the shape-changing 

qualities of flexural materials in addition to the structural 

qualities of rigid ones. Furthermore, beads as a tensegrity 

have the novel property of distributing compressive forces 

externally and tension internally, which contrasts with 

tensegrities commonly seen in deployable architecture 

such as inflatables and the iconic bar-and-cable systems of 

Kenneth Snelson and Buckminster Fuller.

Our work is also tangent to research in low-energy adap-

tive architectural systems, like TU Delft’s Hyperbody 

"Muscle Tower II" (Bier 2011) and other large-scale 

prototype structures such as those built at University 

College, London (Senatore et al. 2017) and the University 

of Stuttgart (Sobek and Teuffel 2001). However, the focus 

of these projects is on control protocols for large batteries 

of actuators, rather than on the building components or 

structural units themselves, which tend to be traditional 

materials such as steel and standard mechanisms such 

as hydraulic pistons. Indeed, if the tensioning of the string 

in a beadwork structure is handled by pistons or other 

digitally controlled actuators, many of the same principles 

could be applied. On the other hand, bead structures are 

also versatile enough to be implemented as passive or 

human-powered systems, and can be designed, assembled, 

and upkept cheaply while still exhibiting qualities of adapt-

ability and self-repair.

METHODS
Bead Shape

We considered beads to be solids with one or more hollow 

channels that may or may not intersect. This allows Y- and 

X-shaped beads (Fig. 2), as well as more complicated topol-

ogies. The most important aspect is the geometry of the 

contact surfaces, which determines orientation constraints 

and interlocking behavior as well as the torque between 

adjacent beads. For example, generic flat interfaces 

constrain position but not relative rotation, whereas inter-

locking interfaces can potentially fully constrain adjacent 

beads.

For complex geometries our design process begins from 

a skeletonized “framework”:  a connectivity graph with 

nodes embedded in 3D space. The edges of the graph 

are a placeholder for the network of string(s), which 

are added later. This is to be as generic as possible. In 

contrast with other workflows such as graphic statics, our 

choice of framework is essentially arbitrary, and need not 

necessarily reflect any kind of preoptimization or force 

analysis. For example, the geometry in Figure 6 is not a true 
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funicular dome, and hence cannot stand without a tensile 

string holding the beads in compression. It would imme-

diately collapse as a pure, mortarless masonry gridshell. 

Conceptually, the emphasis is not upon static form-finding 

to produce an ideal geometry at time of manufacturing 

but rather to produce a robust assembly that will weather 

unpredictable loading conditions and still return to its 

original state.

To generate printable bead geometries, we apply a method 

we term “graph augmentation”: given a framework, we build 

volumetric beads about the edges such that the interface 

between two adjacent beads is aligned to the perpendicular 

plane of the edge between them in the framework (Fig. 2).

Relative orientation of beads can be shape-programmed by 

a variety of approaches, such as lock-and-key-type, screw-

type, and multicord interfaces (Fig. 3). Bead orientations 

need not be maximally constrained to exhibit self-organiza-

tion, however. For example, self-assembly of a regular 180˚ 

alternating pattern was observed in a simple 1D sequence 

of beads subject to agitation and gravity, in both physical 

tests and simulation (Fig. 5). We hypothesized we could use 

the same principle to create any angle of alternation, and 

with our simulation pipeline we were able to validate this 

intuition instantly.

Simulation

Dynamic architectural systems place unique demands 

on the designer to understand their behavior in time as 
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3 Three possible bead geometries 
with different embedded intelli-
gences. Left to right: lock-and-key, 
screw, and multicord joinery.

4 Still from rigid body simulation.

5 Simulation of bead shape that 
spontaneously arranges in an 
alternating pattern, (a) before, (b) 
after, and (c) physically.

4 5b
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a continuum and subject to a complex array of forces. 

Whereas physical scale models traditionally served this 

purpose, to mitigate rapid-prototyping turnaround times 

and quickly validate hypotheses we developed a pipeline 

from Rhino3d Grasshopper (Rutten 2020) to the physics 

engine Bullet (Fig. 4) (Coumans and Bai 2017). While this 

engine is primarily used for game physics and machine 

learning for robotics, its robust rigid-body collision physics 

makes it a natural choice for simulating string-bead inter-

actions. String physics simulation methodologies generally 

fall into two categories: soft-body and rigid-body approxi-

mations. The latter approach treats a string as a chain of 

many small rigid bodies, each affixed to the next by a virtual 

joint. While soft-body approximations are specialized for 

deformable matter and may better simulate a string in 

isolation, simulations of beadwork are more reliable when 

strings and beads are approximated by the same type of 

object.

Thus, we treated a string as a chain of many small 

rigid bodies, each affixed to the next by a point-to-point 

constraint, since this approach has been validated for 

speed and accuracy (de Jong, Wormnes, and Tiso 2014; 

Gołębiowski et al. 2016). One difficulty in simulating beads 

and strings, especially when real-time interactivity is 

desired, is the computational burden produced by simu-

lating collisions between concave mesh objects such as 

hollow beads. A standard workaround is to decompose 

each concave mesh into a series of convex parts whose 

collisions can be calculated much more quickly and accu-

rately. Our simulation workflow employed both manual and 

automatic convex decomposition functionalities. General 

algorithms such as volumetric hierarchical approximate 

convex decomposition (VHACD) are widely used when 

geometry is not known beforehand (Mamou 2014). However, 

since our beads had predictable topology, we wrote custom 

6 A complete generic dome frame-
work (left) and the 3D printable 
bead geometries generated via 
graph augmentation.

6

convex decomposition scripts to yield more consistent and 

accurate results. Real-time interactivity in the simulations 

enabled invaluable feedback between in silica experiment, 

human understanding, and physical prototypes.

Threading Path

For any network topology more complex than a single 

row of beads in series, there may be many ways to thread 

them such that a cord passes through each bead at 

least once. For instance, we might use several threads 

each following a different path, and some beads might be 

threaded with multiple cords. There are many properties 

of a given threading path one might wish to optimize; here 

we consider (1) material economy, (2) ease of assembly, (3) 

shape control, and (4) mechanical effort.

Material economy: When the objective is to minimize the 

length of a single string, this reduces to the well-known 

Route Inspection problem (Edmonds and Johnson 1973). 

We implemented an algorithm using linear programming in 

the Python module PuLP (Mitchell and Dunning 2011), which 

solves this problem exactly. However, the threading paths 

can be highly asymmetric.

Ease of assembly: Often, when assembling a system by 

hand, a symmetrical threading path can be more intuitive 

to follow. The symmetries of a network are encoded in its 

automorphism group, a collection of ways of rearranging 

nodes of the graph such that path continuity is always 

preserved. By performing any such rearrangement on 

the vertices of a path, we obtain a topologically symmetric 

copy. The challenge then is to determine a set of one or 

more paths whose symmetric copies will cover the edges 

of the graph with the fewest overlaps. For example, in the 

threading diagram in Figure 15, there are only two unique 

paths that have been transformed into eight copies by a 
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7 Initial dome prototype: (a) before, 
and (b) after tensioning cord.

8  Tubular prototype exhibiting 
all X-type beads for greater 
geometric constraint. Self-
repairing qualities are seen (a) 
before, and (b) after tensioning.

9 A simple indeterminate arch 
exhibiting multiple stable states 
(a–c) that appear more or less 
frequently in accordance with how 
they minimize a function of the 
kink angles; (d) shows a closeup of 
a kink.

subgroup of the graph’s symmetries—in this case, the 

mirror symmetries. Unlike true mirror symmetry, though, 

graph automorphisms are topological in nature, making 

them robust to warping. This more generalizable approach 

to path planning can identify redundancy even in geome-

tries that do not bear obvious symmetry.

Shape control: Geometric constraints upon one bead with 

respect to its neighbors can come not only from the bead’s 

shape but also potentially from the threading pattern. As 

mentioned above and shown in Figure 3, multi-thread 

systems offer the benefit of constraining rotations. Two 

strings will fully constrain adjacent beads with planar 

interfaces, and three strings will fully constrain arbitrarily 

shaped beads, in the same sense that three points of 

contact are required to stabilize a chair. The dome model 

shown in Figure 1 exhibits a two-cord system with planar 

interfaces. A different approach to multicord threading 

patterns can be seen in the tubular prototypes in Figure 

8. Here each bead represents a node of degree 4 in the 

model’s graph representation. Thus, with a minimum 

of four points of contact per bead, the structure is fully 

constrained in position and orientation.

Mechanical effort: Minimizing the cumulative change in 

angle of a thread’s path presents another possible crite-

rion, since static analyses reveal that sharp angles can 

hinder force transmission by more than 70% (see “Static 

Force Analysis” below). Hence, less sharp angles will also 

minimize the force required to tension the bead system. In 

any network wherein all nodes are of even degree, we can 

break this problem into numerous smaller problems: for 

each node, we need to construct a matching among the 

incident edges such that the sum of the angles between 

matched pairs is minimized. This subproblem can be solved 

as a linear program, and if solved for each node inde-

pendently, the resulting global threading path is guaranteed 

to minimize sharp turns in the threading path. In the special 
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case of a two-cord bead system, like those discussed 

above, all nodes have even degree by default. Even-degree 

frameworks also permit the use of the much simpler 

Fleury’s Algorithm for generating an Euler Tour, which is a 

single path that crosses each edge in a graph exactly once, 

necessarily in the shortest possible way. Fleury’s Algorithm, 

therefore, perfectly solves the Route Inspection problem 

for this special subcategory of frameworks.

These methods assume the existence of a static framework; 

however, one could also begin with a surface and place 

nodes and edges upon this surface in a manner conducive 

to more optimal threading paths. For example, a geodesic 

naturally minimizes the cumulative change in angle of a 

path between two points on a surface; hence a geodesic 

gridshell, though it may require many independent cords, 

compensates with a comparatively low activation energy. 

The tubular models in Figure 8 offer one example of this 

approach, as helices are geodesics on a cylinder.

RESULTS & DISCUSSION
Prototypes

We applied our techniques to a simple dome-shaped 

gridshell structure. The beads were 3D printed in generic 

polylactic acid (PLA) thermoplastic, and the threading was 

performed by hand with cotton cord. The first prototype 

had a footprint of approximately 5 in × 5 in. When the cords 

at each of the four feet were pulled, the beads sponta-

neously formed a rigid dome structure (Fig. 7). This success 

motivated a second prototype at approximately three times 

11 Foam stereotomy could produce beadwork structures at larger scales, preserving volumetric shape programming while maintaining light weight.

scale, with a 15 in × 15 in footprint, this time threaded such 

that two strings passed through each bead. This gave more 

control at the expense of increased friction. To compensate, 

the dome’s assembly was minimally aided (Fig. 1). When 

tension was removed from the upright dome, the slightest 

touch would collapse the structure, demonstrating that 

this is not a true funicular dome but a tensegrity reliant on 

tension and compression in balance. Conversely, starting 

from a slack state, as the dome’s apex was lifted into place 

simultaneously with a gradual reintroduction of tension, 

the remainder of the structure assembled of its own 

accord. This “one-handed” assembly behavior not only 

demonstrates the influence of threading path and friction 

on global behavior but also promises further use cases. For 

example, as a counterweighted window similarly retains its 

position after it is adjusted, a heavy structure could form 

and unform only with gentle assistance. This could poten-

tially lead to a novel kind of masonry construction with 

improved safety, user-friendliness, and sustainability.

Analysis

Self-organization is a suggestive term used with varying 

definitions in the discipline of architecture. Inevitably 

there is some input energy, and even physical or biological 

definitions allow that this force may come from without 

the system itself, subtly augmenting the meaning of “self”- 

organizing. For example, Brownian motion is caused by 

particle bombardment, and in the Self-Assembly Lab’s 

Fluid Crystallization project, a wave chamber is agitated to 

ensure intermixing of the floating magnetic modules (Tibbits 

11
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2014). Therefore, we adopt the interpretation that self-or-

ganization indicates an unordered form of agitation that 

nevertheless yields an ordered result. Inherent indetermi-

nacy is, therefore, a hallmark of self-organization, by our 

definition.

A small “arch” model helps illustrate this principle (Fig. 9). 

Rather than a smooth arc, it forms a limited number of 

“kinks” in the sequence of beads. Repeatedly slackening 

and tensioning this arch, we observed that while the arch 

shape was different each time, certain arrangements 

of kinks were more likely to form in proportion with how 

much they minimized tension, or equivalently how much 

they maximized the angles at the joints. This probabilistic 

model strikes a balance between indeterminacy and order. 

Conversely, for a set of n kinks at specified positions in the 

sequence of beads, the angles formed at the respective 

kinks are consistently the same. We hypothesized that these 

angles are such that, if one views the arch as an n+1 bar 

linkage in the plane, then the sum of the squares of the 

angles between adjacent members is maximized.

In this example, “organization” can be quantified as the size 

of the system’s configuration space, that is, the volume 

spanned by the valid domains in its parameter space. For 

example, we could measure the maximum angle between 

consecutive beads with respect to the distance separating 

their facing ends. If we define the length of cord between 

13
15
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12 Maximum angle attainable between cylindrical beads as a function of the 
length of cord separating them. Note that θmax → 0 as l → 0, continuously 
but with discontinuous first derivative at l = 2r and l = r. This graph illus-
trates the shrinking of the configuration space with the tensioning of the 
system.

13 The figure assumes a cantilever subjected to gravity. Bead diameter 
D = 2r is inversely related to required tension f. L represents the bead 
length, m the mass per bead, and n the number of beads being supported. 
Because n is inversely proportional to both m and L, f is constant for 
changing n.

14 Two beads being compressed along a cord, demonstrating the effect of 
miter angle on friction between bead and cord. If θ is the supplement of 
the miter angle, Fb = Ft cos(θ/2) and Ffr = Ft sin(θ/2). For example, if θ = 
π/2, we would expect Ffr ≈ 71%F.

15  A diagram of the threading path applied to the initial dome prototype (Fig. 
7), as viewed from above. Here, symmetry is emphasized.

14
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the centers of two cylindrical beads’ flat faces as l, the 

radius of the beads as r, and the maximum angle between 

the two beads’ axes as θmax, we obtain the set of equations 

below whose plot is shown in Figure 12, revealing a contin-

uous monotonic decrease in θmax as l decreases: 

θmax =  π  if 2r ≤ l 
 π - arccos((l-r)/r)  if r ≤ l ≤ 2r 
 arcsin(l/r)   if 0 ≤ l ≤ r

In practice, this means that any shortening of the cord, 

such as by tension, will reduce the size of the configuration 

space until the system is forced into a constrained shape.

Static Force Analysis  

In theory, using infinitely strong and frictionless materials, 

one can create a self-organizing bead structure approxi-

mating any given framework. In practice, however, friction, 

strength, and geometry play a role that can be limiting or 

fruitful. Consider the radius as the maximum distance from 

a point of contact between two beads to the string where 

it passes through them. A greater radius reduces the 

required tension force by supplying more torque. However, 

assuming constant density and cross-section, the aspect 

ratio of radius to length is unimportant. Figure 13 illus-

trates that n beads each l/n in length will require the same 

force to rigidify as m beads each l/m in length, for any n, m 

> 0.

Friction can significantly affect the transfer of tension. 

We observed this behavior even in relatively low-friction 

systems like the PLA and cotton-cord dome prototypes. In 

mitered beads like these, unlike in a straight chain of beads, 

the tension force applied to the cord is differently distrib-

uted, as seen in Figure 14. As the miter angle decreases, 

the normal force Fb between beads decreases, and the fric-

tion force Ffr between the string and the beads increases, 

requiring considerably greater force to pull.

Scale and Manufacturing 

These considerations take on increasing importance as 

one begins to consider bead structures at larger scales. 

3D printing has provided a natural means of producing 

these custom bead geometries, whose internal voids 

would present a challenge to most traditional subtractive 

manufacturing methods. In the interest of scaling bead 

structures to the human or building scale, novel mate-

rials and manufacturing methods ought to be considered. 

Using 3D-printed beads, but simply more of them, is one 

possibility. This offers the challenge of much more highly 

segmented frameworks, which become correspondingly 

more indeterminate as each vertex in the framework 

presents a potential for error, and this error may quickly 

accumulate into large displacements. Hierarchical 

approaches wherein substructures are rigidified incre-

mentally could offer one solution.

A second approach is to use a large-scale volumetric mate-

rial, such as foam, which offers high stiffness-to- density 

ratios. Precedents for large-scale foam tensegrities include 

the Periscope Tower by Matter Design Studio (Clifford and 

McGee 2011). This wind-prone structure was also stabi-

lized by tension members, but differs from bead structures 

in that the cables were static and external to the foam 

blocks. Assuming traditional manufacturing methods of 

hot wire cutting and milling, which are less easily applied 

to complex concave surfaces, the challenge lies in how to 

run cords internally through a foam bead. One approach is 

to slice the bead along a plane through the desired thread 

path, then carve out half of the channel in each half of the 

bead before reassembling. To avoid the need for adhesives, 

the two halves of the bead can then be joined by wrapping 

with a secondary cord around the outer surface. This 

process of slicing and recombining recalls the “convex 

decomposition” process used to preprocess digital bead 

geometries for rigid body simulation, in a natural extension 

of the simulation-to-physical prototyping workflow. A visu-

alization of what a large format bead test structure might 

look like is shown in Figure 11. Such a structure could 

provide rigid shelter while using no mortar and still be safe 

and robust to unusual loads such as high winds or children 

climbing upon it.

CONCLUSION
This preliminary study examined the potential of beads 

as a medium for controlled self-assembly and deployable 

structures. The potential applications of this technique are 

diverse, including but not limited to:

• rapidly deployable structures for disaster relief, 

temporary installations, and leisure.

• low-energy shape actuation for soft robotics and 

medical prosthetics, such as the CardioARM medical 

snake robot that uses a similar mechanism to control 

the joints of a many-segmented probe (Ota et al. 2009).

• assembly from a distance for autonomous structures 

in extreme environments as suggested by projects 

like MIT Self-Assembly Lab’s Aerial Assembly project 

(Staback et al. 2017).

Rigid body simulation has also proven a valuable tool for 

rapid prototyping and experiment. The two prototypes 

presented in this paper demonstrate some potential 

AUTOMATION AND AGENCY



380

challenges of threading and scale that must be further 

investigated to validate these concepts for human-scale 

applications. Whereas graph augmentation offers a generic 

and versatile framework for design, further research 

should leverage our current understanding of forces 

and complexity to produce more robust specimens. Our 

approach to self-assembly is also virtually agnostic to the 

materials used. Even off-the-shelf materials are sufficient 

to demonstrate the behaviors discussed, but scaling up 

the combination of stiffness and lightness will place more 

constraints on the variety of suitable materials. In the 

context of existing research on self-assembly for archi-

tecture, though, this is a departure from the specialized 

handshake mechanisms heretofore seen, such as magnets, 

bimetals, shape-memory polymers, and thermo- or 

hygro-active materials. The self-assembly of beads offers 

a novel approach with potentially greater control of shape 

formation, tunable and reversible rigidity, and structural 

robustness.
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